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Abstract- In this paper, we study numerical method for Fuzzy 

differential equations by Runge-Kutta method of order three.  

The elementary properties of this method are given.  We use 

the extended Runge-Kutta method of order three in order to 

enhance the order of accuracy of the solution.  Thus we can 

obtain the strong Fuzzy solution. 
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I. INTRODUCTION 

 

In this paper, we have introduced and studied a new technique 

forgetting the solution of fuzzy initial value problem. The 

organized paper is asfollows: In the first three sections, we 

recall some concepts in fuzzy initial value problem. In sections 

four and five,we present Runge-Kutta method of order three 

and its iterative solution forsolving Fuzzy differential 

equations. The proposed algorithm is illustrated by anexample 

in the last section. 

II. PRELIMINARY 

 

A trapezoidal fuzzy number u is defined by four real 

numbers k m n      where the base of the trapezoidal 

is the interval [k, n] and itsvertices 

at ,  .x x m  Trapezoidal fuzzy number will be written 

as ( , , , ) .u k m n The membership function for the 

trapezoidal fuzzy number ( , , , )u k m n  is defined as 

follows : 

 

 

 (1) 

 

 

The results may be: 

  (1) 0     0;u if k   

  (2) 0     0;u if   

  (3) 0     0;u if m   

 and (4) 0     0;u if n 
 

 

Let us denote RFbythe class of all fuzzy subsets of R (i.e. u :R 

 [0,1]) satisfying the following properties: 

(i)
, 0 0
  is  n o rm a l, i .e .  w ith  ( ) 1

F
u R u x R u x   

 

(ii)
F

Ru  , u is convex fuzzy set(i. e. 

),],1,0[)},(),(min{))1(( Ryxtyuxuyttxu 
 

(iii)
,
  is  u p p e r  s e m i c o n tin u o u s  o n  ;

F
u R u R (iv) 

 

 ; ( ) 0  is  c om p a c t, w h e re   d e n o te s  th e  c los u re  o f  .x R u x A A  Then RF is 

called the space of fuzzy numbers.  

 

Obviously 
.
 H e re   is  u n d e rs to o d  a s

F F
R R R R   

xR
x

;{
}{

 is usual real }number
 

 

We define the r-level set, ;x R  

 [ ] \ ( ) ,         0 1;
r

u x u x r r     (2) 

clearly  0
[ ] \ ( ) 0  is  com pac t,u x u x 

 
 

Theorem 2.1 

Let ( , , )F t u v  and ( , , )G t u v belong to 1
( )

F
C R  and the 

partial derivatives of F and G be bounded over .
F

R  Then for 

arbitrarily fixed  , 0 1,r r   the numerical solutions of 

1
( ; )

n
y t r


 and );(

1
rty

n 
converge to the exact solutions 

( ; )Y t r  and ( ; )Y t r  uniformly in t. 

 

Theorem 2.2 

Let ( , , )F t u v  and ( , , )G t u v  belong to 1
( )

F
C R  and the 

partial derivatives of F and G be bounded over 
F

R and 

2 1 .L h   Then for arbitrarily fixed 0 1,r   the iterative 

numerical solutions of 
( )

( ; )
j

n
y t r  and 

( )

( ; )
j

n
y t r  converge 

to the numerical solutions ( ; )
n

y t r  and  ( ; )
n

y t r  in 

0
,  w h e n  .

n N
t t t j   

 
 

III. FUZZY INITIAL VALUE PROBLEM 
 

Consider a first-order fuzzy initial value differential equation is 

given by 

 
 

'

0
( ) ( , ( ) ) ,   ,y t f t y t t t T 

 
                                                     (3) 

0 0
( )y t y  

,   

      1  ,   

,   

x k
k x

k

x m

x n
m x n

m n


 



 


 



( )u x 
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We denote the fuzzy function y by , .y y y 
 

 It means that 

the r-level set of y(t) for  0
,t t T  is 

 ( ) [ ( ; ) , ( ; )] ,
r

y t y t r y t r  

]1,0()],;(),;([)]([
00

 rrtyrtyty
rn

 

we write   

Because of y' ( , )f t y  we have 

( , ( ( ); ) [ , ( ; ) , ( ; )]f t y t r F t y t r y t r  (4) 

( , ( ( ); ) [ , ( ; ) , ( ; )]f t y t r G t y t r y t r
 

  

By using the extension principle, we have the membership 

function 

)))((,( stytf = sup Rstfsty  )},,(\))(({   (6) 

so fuzzy number ( , ( ) ) .f t y t  From this it follows that 

]1,0()],);(,(),);(,([))](,([  rrtytfrtytftytf
r

 (7) 

where 

 
( , ( ) ; )f t y t r  min

 ( , ) | [ ( )]
r

f t u u y t  (8) 

 
( , ( ) ; )f t y t r  max

 ( , ) | [ ( )]
r

f t u u y t
 

  

Definition - A function 
F

R R is said to be fuzzy 

continuous function, if for an arbitrary fixed 
0

t R and 

0, 0   such that 

 

 
0

| |t t    D [f(t), f(t0)] <  

Throughout this paper it is considered that fuzzy functions are 

continuous in metric D.  Then the continuity of 

f(t,y(t);r)guarantees the existence of the definition f(t, y(t); r) 

for t  [t0,T] and r  [0,1].  Therefore, the functions G and F 

can be defined too. 

IV. RUNGE-KUTTA METHOD OF ORDER THREE 

 

Consider the initial value problem 

 

 
0

'( ) ( , ( ) ) ,    [ , ]y t f t y t t t T   (10) 

 
0 0

( )y t y
 

 

Assuming the following Runge-Kutta method with three slopes 

 

1 1 1 2 2 3 3
( ) ( )

n n
y t y t W K W K W K


     (11) 

where 

1
( , ( ) )

n n
K h f t y t  

2 2 2 1 1
( , ( ) )

n n
K h f t c h y t a K  

 
 

23213133
)(,( KaKatyhcthfK

nn
 ) 

and the parameters 
1 2 3 2 3 2 1 3 1 3 2
, , , , , , &W W W c c a a a  are 

chosen to make 
1n

y


 closer to 
1

( ) .
n

y t


  There are eight 

parameters to be determined.  Now, Taylor’s series expansion 

about 
n

t
 
gives 

...)(
!3

)(
!2

)(
!1

)()(
'''

3

''

2

'

1


 nnnnn
ty

h
ty

h
ty

h
tyty =

....][
!2

))(,(
!1

)(

2


ntytnnn

fff
h

tytf
h

ty

 

(12) 

 

 
 

.....}]
22

21


tnyy
ffa  

 

h 

 

 

  

+… } 

Substituting the values of  

 

 
 

 
+… 

(13) 

Comparing the coefficients of h,h
2
& h

3
, we obtain 

, 

 

, 

 , 

, , 
 

(14) 

Then we immediately obtain from the fourth and fifth 

equations , that . Similarly the values of the remaining 

parameters are obtained. 
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When 
32

cc  , we get  and .  We get the values 

of the other parameters as 

. 

Runge-Kutta method is obtained as  

  (15) 

Where 

 

 

 
 

V.  RUNGE-KUTTA METHOD OF ORDER THREE 

FOR SOLVING FUZZY DIFFERENTIAL 

EQUATIONS 

 

Let [ , ]Y Y Y  be the exact solution and [ , ]y y y  be the 

approximated solution of the fuzzy initial value problem . 

 

Let 

)];(),;([)]([)],;(),;([)]([ rtyrtytyrtYrtYtY
rr
 Throughout 

this argument, the value of r is fixed.  Then the exact and 

approximated solution at
n

t  are respectively denoted by 

 

[ ( )] [ ( ; ), ( ; )]
n r n n

Y t Y t r Y t r ,

)0)](;(),;([)]([ Nnrtyrtyty
nnrn

 . 

 

The grid points at which the solution is calculated are 

0

0
, , 0

i

T t
h t t ih i N

N


     . 

Then we obtain,  

 

1 1 2 3

1
( ; ) ( ; ) [2 3 3 ]

8
n n

Y t r Y t r K K K


   

, 

where )];(),;(,[
1

rtYrtYthFK
nnn

  

2 1 1

2 2 2
 [ ,  ( ; ) , ( ; ) ]

3 3 3
n n n

h
K h F t Y t r K Y t r K   

 (16) 

3 2 2

2 2 2
 [ ,  ( ; ) , ( ; ) ]

3 3 3
n n n

h
K h F t Y t r K Y t r K   

and 

 

],332[
8

1
);();(

3211
KKKrtYrtY

nn




where

1
 [ ,  ( ; ) , ( ; )]

n n n
K h G t Y t r Y t r  

2 1 1

2 2 2
 [ , , ( ; ) , ( ; )

3 3 3
n n n

h
K h G t Y t r K Y t r K   

] 

                                                                            (17) 

3 2 2

2 2 2
 [ , , ( ; ) , ( ; )

3 3 3
n n n

h
K h G t Y t r K Y t r K   

] 

 

Also we have 

1 1 2 3

1
( ; ) ( ; ) [ 2 3 3 ]

8
n n

y t r y t r K K K


   
 

where
 

1
 [ ,  ( ; ) , ( ; )]

n n n
K h F t y t r y t r

2 1 1

2 2 2
 [ , ,  ( ; ) , ( ; )

3 3 3
n n n

h
K h F t y t r K y t r K    ] (18) 

 

3 2 2

2 2 2
 [ , ,  ( ; ) , ( ; )

3 3 3
n n n

h
K h F t y t r K y t r K   

] 

and  

 

],332[
8

1
);();(

3211
KKKrtyrty

nn




where

1
 [ ,  ( ; ) , ( ; )]

n n n
K h G t y t r y t r  

2 1 1

2 2 2
 [ , ,  ( ; ) , ( ; )

3 3 3
n n n

h
K h G t y t r K y t r K   

] (19) 

 

3 2 2

2 2 2
 [ , ,  ( ; ) , ( ; )

3 3 3
n n n

h
K h G t y t r K y t r K   

] 

Clearly, and converge to and 

respectivelywhen ever  

 

VI. NUMERICAL RESULTS 

 

In this section, the exact solution and approximated solution 

are obtained byEuler’s method and Runge-Kutta method of 

order three. 

 

Example  

Consider the initial value problem  

 

 y′(t)= f(t),  t∈[0,1] 

 

 y(0)= (0.75+0.25r, 1.125 -0.125r) 

 

 

The exact solution at t=1 is given by  

  Y(1;r)=[(0.75+0.125r)e,(1.125-0.125r)e], 

0≤r≤1 

Using iterative solution of Runge-Kutta method of order three, 

we have 

 

 

 
And by 

 

 
 

Where i=0,1,2,...N-1 and h=  . Now, using these equations as 

an initial guess for following iterative solutions respectively, 
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And 

 

 

 

 
And j=1,2,3. Thus, we have  and  

 

Therefore, and  are 

obtained. 

 

By minimizing the step size h, the solution by exact method 

and Runge- Kutta method almost coincides. 

 

Table 1: Exact solution 
 

r 
  

0 2.038711371 3.058067057 

0.1 2.106668417 3.024088534 

0.2 2.174625463 2.990110011 

0.3 2.242582508 2.956131488 

0.4 2.310539554 2.922152966 

0.5 2.378496600 2.888174443 

0.6 2.446453646 2.85419592 

0.7 2.514410691 2.820217397 

0.8 2.582367737 2.786238874 

0.9 2.650324783 2.752260351 

1 2.718281828 2.718281828 

 

Table 2: Approximated solution 

 
r 

  

0 2.038633 3.057949 

0.1 2.106587 3.023972 

0.2 2.174542 2.989995 

0.3 2.242496 2.956018 

0. 2.310451 2.922041 

0.5 2.378405 2.888063 

0.6 2.446360 2.854086 

0.7 2.514314 2.820109 

0.8 2.582260 2.786132 

0.9 2.650223 2.752154 

1 2.718177 2.718177 

 

VII. CONCLUSION 

 

In this paper, numerical method for solving Fuzzy differential 

equations is considered. A scheme based on thirdorder Runge –

Kuttamethod to approximate the solution of fuzzy initial value 

problem has been formulated. Numerical example shows that 

the exact and approximate solutions converge when h 0 . 
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